A Best Possible Double Inequality for Power Mean

نویسندگان

  • Yong-Min Li
  • Bo-Yong Long
  • Yu-Ming Chu
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

A Sharp Double Inequality Involving Trigonometric Functions and Its Applications

We present the best possible parameters p,q ∈ (0,1] such that the double inequality 1 3p2 cos(px)+ 1− 1 3p2 < sin(x) x < 1 3q2 cos(qx)+ 1− 1 3q2 holds for all x ∈ (0,π/2) . As applications, some new inequalities for the sine integral, Catalan constant and Schwab-Borchardt mean are found. Mathematics subject classification (2010): 26D05, 26E60.

متن کامل

(m1,m2)-Convexity and Some New Hermite-Hadamard Type Inequalities

In this manuscript, a new class of extended (m1,m2)-convex and concave functions is introduced. After some properties of (m1,m2)-convex functions have been given, the inequalities obtained with Hölder and Hölder-İşcan and power-mean and improwed power-mean integral inequalities have been compared and it has been shown that the inequality with Hölder-İşcan inequality gives a better approach than...

متن کامل

Optimal Inequalities for the Convex Combination of Error Function

For λ ∈ (0,1) and x,y > 0 we obtain the best possible constants p and r , such that erf(Mp(x,y;λ)) λ erf(x)+(1−λ) erf(y) erf(Mr(x,y;λ)) where erf(x) = 2 √π ∫ x 0 e −tdt and Mp(x,y;λ) = (λxp + (1− λ)yp)1/p(p = 0) , M0(x,y;λ) = xλ y1−λ are error function and weighted power mean, respectively. Furthermore, using these results, we generalized and complement an inequality due to Alzer.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012